TECHNICAL MANUAL

Electro Contaminant Removal (ECR)

Science, Systems and Applications

ECR Capabilities

- Removes heavy metals as oxides
- Removes suspended and colloidal solids
- > Breaks oil emulsions in water & Removes FOG
- Destroys & removes bacteria, viruses, and cysts
- > Processes multiple contaminants at various levels

ECR Benefits

- Low capital & operating costs
- > Low power & maintenance requirements
- Handles wide variations in the waste stream
- NO chemical additions = Sludge minimization
- Treats multiple contaminants for Water reuse

Rationale Due to the development of various industry sectors such as textile, oil & gas exploration, electroplating, tannery, industries in general; a large amount of wastewater is generated during the production. Wastewaters contain high concentration of pollutants, toxins, COD, BOD, salts, metals, color, etc. Many treatment processes have been developed for wastewater such as biological, evaporation, integrated aeration and ozonation, chemical processes, etc. However, all these treatment schemes, individually, are impractical or unviable. Considering the majority of wastewater purification operations; the electro-chemical procedure has been proven and found to be a reliable process because of its low sludge generation, low start-up and operating costs, no chemical additions into the treated water and high treatment efficiencies. One more process has been developed to the commercial stage and is being used on several industrial wastewaters in S.E. Asia. The ECR process is known as Electro Contaminant Removal (ECR) or more commonly known as electrocoagulation, electro-deposition, electro-flotation, electro-oxidation, etc.

ECR Science is based on valid & proven principles involving responses of water pollutants/ contaminants to electric fields and electrically induced oxidation and reduction reactions.

<u>Contractor – Office of U.S. NAVAL RESEARCH</u> Mickley & Assoc., Boulder Colorado December 2004

"Pretreatment Capabilities and Benefits of ECR" "The results do clearly indicate the most beneficial application of ECR in terms of providing pretreatment is to membrane systems. <u>The use of ECR in front of a</u> <u>multi-membrane systems of UF/RO or MF/RO has promise to improve</u> <u>performance of the membrane system and to broaden its application to include</u> <u>feed water having high suspended solids levels".</u> **Coagulation and Electro-coagulation** Chemical coagulation has been used for decades to destabilize suspensions and to effect precipitation of soluble metal species, as well as other inorganic species from aqueous streams, thereby permitting their removal through sedimentation or filtration. Alum, lime, and/or polymers have been the chemical coagulants used. These additions, however, tend to generate large volumes of sludge with high bound water content that can be slow to filter and difficult to dewater. These treatment chemicals also tend to increase the total dissolved solids content of the effluent, making it unacceptable for reuse within industrial applications.

The Flagship ECR System offers an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The system removes metals, colloidal solids and particles, and soluble inorganic pollutants from aqueous media by introducing highly charged polymeric metal hydroxide species. These species neutralize the electrostatic charges on suspended solids to facilitate agglomeration and resultant separation from the aqueous phase. The ECR offers an additional step by taking advantage of the technology's inherent electro-flotation mechanism; wherein hydrogen gas is released at the cathode surface. Electro-flotation simply floats pollutants to the surface of the water wherein it is mixed with hydrogen and oxygen generated from water electrolysis. Each Unit employs diffused air to expedite the floatation process thus allowing water solids to pass between individual electrodes and remain afloat longer; thus allowing the bulk/ majority solids to be removed from the surface instead of waiting for the precipitation process to occur. By removing the bulk surface solids, smaller and less complicated conventional clarification devises can be employed.

The pH, pollutant type and concentration, the bubble size and position, floc stability and agglomerate size all influence the operation of the ECR unit. The overall mechanism is a combination of mechanisms functioning synergistically. The dominant mechanism may vary throughout the dynamic process as the reaction progresses. The dominant mechanism will almost certainly shift with changes in operating parameters and pollutant types.

Highly charged cations destabilize any colloidal particles by the formation of polyvalent polyhydroxide complexes. These complexes have high adsorption properties, forming aggregates with pollutants. Evolution of hydrogen gas aids in mixing and hence flocculation. Once the floc is generated, the electrolytic gas creates a flotation effect removing the pollutants to the floc - foam layer at the liquid surface. There are a variety of ways in which species can interact in solution:

- 1. Migration to an oppositely charged electrode (electrophoresis) and aggregation due to charge neutralization.
- 2. The cation or hydroxyl ion (OH-) forms a precipitate with the pollutant.
- 3. The metallic cation interacts with OH- to form a hydroxide, which has high adsorption properties thus bonding to the pollutant (bridge coagulation).
- 4. The hydroxides form larger lattice-like structures and sweeps through the water (sweep coagulation).
- 5. Oxidation of pollutants to less toxic species.
- 6. Removal by electroflotation and adhesion to bubbles.

<u>Journal of Hazardous Materials</u> Gebze Institute. Turkey March 2003 "Treatment of TEXTILE Wastewaters by ECR using Iron & Aluminum electrodes" Department of Environmental Engineering. "The electro generated flocs separate rapidly and remove color and turb-idity form dyeing waste waters. The process has been found to be very efficient in <u>COD removal and de-coloration</u> <u>with low-energy consumption".</u> **DESCRIPTION of the ECR System** In its simplest form, an ECR reactor is made up of electrolytic cells with one anode and one cathode. When connected to an external power source, the anode material will electrochemically corrode due to oxidation, while the cathode become passive. But, this arrangement is not suitable for wastewater treatment, because for a workable rate of metal dissolution, the use of electrodes with large surface area is required. This has been achieved by using cells with electrodes either in parallel or in double configurations. ECR cell arrangements are either parallel or doubled as shown below.

ECR essentially consists of pairs of conductive metal plates placed between two parallel electrodes and a dc power source. The conductive metal plates are commonly known as "sacrificial electrodes" or common mild steel. The sacrificial anode lowers the dissolution potential of the anode and minimizes the passivity of the cathode.

The parallel arrangement of plates is electrically similar to a single cell with many electrodes and interconnections. In double cell arrangement, a higher potential difference is required for a given current to flow because the cells connected in series have higher resistance. The same current would, however, flow through all the electrodes. On the other hand, in Parallel cell arrangement the electric current is divided between all the electrodes in relation to the resistance of the individual cells.

ECR bipolar electrodes with parallel cells are preferred because less electricity is required. In this instance the sacrificial electrodes are placed between the two parallel electrodes without a middle electrical connection.

This cell arrangement provides a simple set-up, which facilitates easy maintenance during use. When an electric current is passed through the two electrodes, the neutral sides of the conductive plates will be transformed to charged sides, which have opposite charge compared to the parallel side beside it.

Thus, during ECR, the positive side undergoes anode reactions, while on the negative side, cathode reaction is encountered. The released ions neutralize the charges of the particles and thereby initiate coagulation. In addition, as water containing colloidal particulates, oils, or other contaminants move through the applied electric field, there may be ionization, electrolysis, hydrolysis, and free-radical formation which may alter the physical and chemical properties of water and contaminants. As a result, the reactive and excited state causes contaminants to be released from water and destroyed or made less soluble.

Colorado Hazardous Waste Management Society MTS Journal. Vol. 27, No. 1 67 1989 "ECR Treatment of Ship Bilgewater for the U.S. Coast Guard in Alaska""The results show that electrocoagulation treatment is effective in destabilizing oil emulsions. Removal efficiencies (extractable oil) exceeded 99% resulting in non-detectable values of less than 0.2mg/L TPH values in the effluent. The process was also effective in removing heavy metals with removal efficiencies ranging from 71 to 99%". **Tech SYSTEM OVERVIEW** The common element of ECR passes electricity through water. The physical chamber to induce the electricity in the water varies greatly. The chambers vary in flow rate & electrical input configuration, etc. The basic principal is to cause electrons (amps) to flow through the liquid. The reaction takes place on the surface interface between liquid and blades.

ECR is the distinct economical and environmental choice for meeting water treatment standards and compliance requirements. ECR recovers capital and operating costs by eliminating the need for chemicals, discharge fees and fines, harvesting water resources,

and significantly reducing water replacement costs.

Cost of sacrificial metal used within the chamber The conductive material in the ECR unit will dissolve and provide a coagulation nucleus from the blades like Fe++ and Al ++. Because the conductive material dissolves and must be replaced periodically, the form of that material has direct operating cost considerations. The ECR uses common metal bar stock in standard widths available directly from the steel mill.

Surface area configuration ECR treatment occurs at the surface interface between the liquid and the conductive material. Flat plates allow distances to be set that are far enough apart to lessen the clogging caused by large particles in the water, and close enough together to lessen the amount of voltage required to move the electricity through the liquid. The ECR chamber is designed with 3.5mm cells.

Directional flow ECR in general causes air to be liberated from the water. Air bubbles float to the top of any liquid. The bubbles can attach to the surface of the conductive material which blocks the metal liquid interface. The lack of conductivity within the chamber will prevent electrons from passing through the liquid which stops the treatment process. The ECR chamber directs water flow in the same direction as air bubbles float. The system eliminates pressure and resistance because the water flows in the same direction as the air bubbles thus ECR blades do not need to withstand pressure. The ECR units use standard 3-3.6mm thick sheet stock. Because the ECR blades are not specialty cut with lasers or precision machined, the cost is only the price of the steel.

Electrical connections Electricity enters the chamber in anode and cathode pairs. The voltage between the anode and cathode pairs must be set by transforming the grid power to the voltage desired between the pairs. The cost of transformers and the cost of electrical conductors to handle the amperage between the anode and cathode pairs greatly limit the flow rate of traditional outdated chambers. The ECR reaction chamber and its bipolar design allows direct line voltage to be converted from AC to DC and this saves the weight and space of electrical transformers. This also allows for the energy efficiency of operating the power at less than 3 volts per gap between blades, which saves on electrical consumption and it eliminates the need to connect an electrical conductor to each plate, which saves on the labor and blade construction cost. Electrical cost savings depends upon the voltage difference applied between the conductive materials. Power is purchased in watts. A watt is a volt times an amp.

Flow rate within the chamber Units operate at atmospheric pressure. Because the conductive material has no pressure requirement, the chamber can be built to meet any flow rate. However, operational constraints such as the weight and size of steel plates play an important role in determining chamber size. Unit designs are built in 5-15, 10-30, 30-60, 60-120, 120-180M3 per hour configurations for one man operations. Actual flow rates can increase or decrease based on specific conductivity factors of a given wastewater stream. Multiples chambers are configured with high quality electrical requirements for specific waters and power delivery per flow rates.

Scientific Conclusions The fact that ECR technology is now successfully applied to contaminated water around the world is testament to its existing application to the RMG Sector in BD. The ECR Water System has clearly preformed some of the more complex requirements needed to remove a wide range of wastewater pollutants.: See references found at <u>www.flagshipdhaka.com</u> :

The below results are provided by customers and/or have been reported by an Analytical Laboratory!

INDUSTRIAL INFLUENT into a Water Treatment Works Plant SINGAPORE – DHAKA / 2005 - 2017										
X = Not Tested	JT- RAW	JT-ECR No Amps	JT-ECR A1	JT-ECR A2	JT-ECR A3	JT-ECR B1	JT-ECR B2	JT-ECR B3		
ECR Set	tings	.25 A x 35V	1.0 A x 70V	2.5 A x 110V	5.0 A X 175V	1.0 A x 70V	2.5 A x 110V	5.0 A x 175V	6	×
Power Const M3	umption /	0.036 KWH	0.30 KWH	1.146 KWH	3.646 KWH	0.167 KWH	0.637 KWH	2.025 KWH		
									REGIC	NAL RESULTS
<u>Parameter</u> <u>Name</u>	RAW <u>Results</u>	<u>ECR</u> <u>Results</u>	<u>Units</u>	<u>Method</u> <u>Reference</u>						
BOD	638	388	359	338	321	389	325	338	mg/L	APHA 5210B
COD	1150	875	867	865	844	881	822	812	mg/L	USEPA 410.4
Copper	5.38	0.33	0.138	х	х	х	х	0.045	mg/L	USEPA 6010B
Lead	0.063	<0.013	<0.013	х	х	х	х	<0.013	mg/L	USEPA 6010B
Nickel	1.03	0.66	0.521	х	х	х	х	0.314	mg/L	USEPA 6010B
Oil & Grease	16.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	mg/L	USEPA 413.2
рН	6.5	6.7	8.8	8.7	9.0	7.7	8.2	8.2	Units	USEPA 9040B
TSS	228	19.3	14.0	9.3	<2.5	28.7	6.0	14.0	mg/L	APHA 2540 D
Turbidity	129	22.7	0.6	0.4	0.3	1.0	0.7	0.8	NTU	USEPA 180.1
Zinc	0.553	< 0.004	< 0.004	х	х	х	х	< 0.004	mg/L	USEPA 6010B

SUPERNATANT – Compressed Garbage Leachate							
Parameter R In Mg/L Lea		AW chate	ECR Result	Max. Limit	M Rei	ethod ference	
pH Value	3	8.8	5.3	6-9	APHA 4500H-98		
COD	68	,000	25,000	600	APHA 5220-05		
TSS	3,4	440	380	400	APHA 2540D-0		
TD Solids	32	,800	19,000	3,000	APHA	2540C-05	
Fats , O&G	2,	560	380	60	APHA	\$5520-05	
SEWAGE - D	omes	stic Ir	nfluent	С	henai IN	DIA - 2005	
Parameter In PPM	RAW Water		EC Res	R Sult			
TD Solids		3,500		140		75 Volt	
COD		550		32			
BOD	500		13		Amp		
O&G	75		Nil				
TSS	75		8				
	Absent						
FECALCOLIFORM				Absent			
STREP	Negative						

FOOD (Soy Sauce) Mfr.								
Johor, MALAYSIA – 2005								
Parameter	RAW	ECR	Max.					
In Mg/L	Water	Result	Limit					
TD Salts	748	790						
TSS	5,041	2.2	100					
COD	21,668	909	100					
BOD	6,373	327	50					
pН	4.4	6.2	5.5-9.0					
Fats O&G	38	Nil	10.0					
FOOD (Soft Drink) Mfr.								
	Bandu	ing, INDO	NESIA - 2006					
COD > Bio	356	331	100					
TSS > Bio	51	12	200					
COD < Bio	10,540	279	100					
TSS < Bio	9,402	23	200					
FOOD (Chili & Tomato) Mfr.								
Jawa Rawat, INDONESIA -2006								
COD < Bio	6,300	2,700	Alum.					
pH < Bio	3.7	6.0	Elec-					
Color	Red	Clear	trodes					

TEXTILE Industry				EXPLORATION Drill Waters				
		DESH – 2005-2007	(SCR)	Melibur, INDONESIA- 2005				
	Parameter	RAW	ECR	Method	Parameter	RAW	ECR	Max.
Operations	In Mg/L	Result	Result	Reference	In Mg/L	Water	Result	Limit
	TD Salts	2,930	3,100	APHA 2540	COD	615	60	100
Dye Bath	TSS	57	4	APHA 2540	Phenol	.98	.27	0.5
& FINISN	COD	413	164	APHA 5220	Ammonia	4.83	2.44	1.0
<u>IVIIXed</u>	BOD	148	78	APHA 5210	O&G	270	.41	10.0
Washwalers	Color	>250	30	HAZEN Unit	На	7.5	8.7	6-9
	рН	9.7	10.8	APHA 4500	Iron	0.31	Nil	50
	COD	871	98	APHA 5220	Manganese	0.01	0.000	2.0
Yarn Weaving	BOD	309	34	APHA 5210	Manyanese	0.000	0.009	2.0
	O&G	142	.02	APHA 5520	EXPLORATION Drill Waters			
Water Jet	Color	150	10	APHA 2120	(SCR) Jambi, INDONESIA 2006 - 2008			A 2006 - 2008
	рН	5.8	8.6	APHA 4500	COD	375	38	Close Reflux
	TD Salts	323	321	APHA 2540	BOD	215	15	Azide Mod.
DYE Bath	TSS	267	171	APHA 2540	TSS	2.950	98	Dried at 105
& FINISN Mixed	COD	842	355	APHA 5220	0&G	577	Nil	Soxhlet Extr.
Washwaters	BOD	249	112	APHA 5210	Turbidity	1 332	18	Nephelometric
vvasnivalers	Color	>250	60	LOVI Meter		0.24	0.02	Iodometric
	pН	10.3	10.9	APHA 4500	1120	0.24	0.02	Titrimotrio
Dyeing	COD	713	270	3A X 75V	Ammonia	38	4	
Printing Deat Bio	COD	4,923	980	6A X 200V	Lead	0.73	0.002	
POSt BIO	COD	98	16	2.5A X 250V	рН	8.0	8.2	Elecrometric
	TD Salts	494	625	APHA 2540	Color	14,000	500	HAZEN Unit
	TSS	20	4	APHA 2540	PRODUCED Waters			
TEXTILE	COD	27	14	APHA 5220	(SCR) Duri, INDONESIA - 2003			
RIVER Feed	BOD	9	5	APHA 5210	COD	610	58	100
Water	Color	50	20	HAZEN Unit	BOD	375	15	50
	рН	3.8	4.1	APHA 4500	Phenol	0.63	0.19	0.5
	Hardness	30	34	APHA 2340	O&G	156	Nil	10.0
Central Eff	luent Treatr	nent Plai	nt – SIPCO	Γ – Erode, India	pH	7.5	8.7	6-9
Effluent	COD	728	272	Site Lab	Arsenic	180	Nil	0.1
Dye Bath	COD	3.060	1 440	Site Lab	Iron	0.52	Nil	5.0
,	000	0,000	ידד, ו		Manganese	0.086	0.009	2.0

TANNERY (Raw Hide) Operation							
Erode, INDIA - 2005							
Parameter	RAW	ECR					
In Mg/L	Water	Result					
Collection Tank Effluent							
COD	7,560	2,943					
BOD	3,442	1,012					
Reverse Osmosis Feed Water							
COD	102	96					
BOD	27	17					
Chromium Recovery by ECR							
Iron Cells	10 Amps	3,603 Total Cr.					
Alum. Cells	10 Amps	2,370 Total Cr.					
TANNERY (Shoe) Operation							
East Java, INDONEISA - 2006							
Parameter	RAW	ECR					
In ppm	Water	Result					
COD < Bio	4,500	1,200					

	Average %		
Heavy	Removed	Other	Average%
Metals	or	Contaminants	Removed
	Recovered		
Aluminum	99.0	Aldrin	P_ 98.0
Arsenic	96.0	Chloreiviphos	s 99.0
Barium	98.0	Cypermethrin	[⊺] 94.0
Calcium	98.0	DDT	^I 99.0
Cadmium	98.0	Diazinon	99.0
Chromium	99.0	Lindane	^D 99.0
Cobalt	62.0	Proptamphos	s 99.0
Copper	99.0	Boron	70.0
Iron	99.0	Cyanide	99.0
Lead	97.0	E. Benzene	99.0
Magnesium	98.0	MP-Zylene	98.0
Manganese	83.0	O-Zylene	98.0
Mercury	66.0	Toluene	99.0
Molybdenum	80.0	Fluoride	60.0
Nickel	99.0	Nitrate	40.0
Vanadium	95.0	Nitrogen TKN	93.0
Zinc	99.0	PCB-Arochlor	82.0
Platinum	83.0	Hydrocarbons	98.0
Selenium	42.0	Phosphate	98.0
Silver	91.0	Potasium	45.0
Tin	89.0	Silicon	99.0

TEXTILE Industry Dhaka, BANGLADESH April 200							
Parameters	Raw Water	ECR Result	Bangladesh Discharge Limits	Method Reference			
M. Ind. Factory							
TDS	2,840	2,865	2100	Mg/L			
рН	8.62	9.54	6-9				
TSS	60	8	150	Mg/L			
Turbidity	670	88		FTU			
COD	310	125	200	Mg/L			
U. Group Facto	ry						
TDS	1,420	1,415	2100	Mg/L			
рН	8.31	8.41	6-9				
TSS	27	4	150	Mg/L			
Turbidity	43	25		FTU			
COD	190	28	200	Mg/L			
S. Textile Factory							
TDS	750	760	2100	Mg/L			
рН	10.53	9.85	6-9				
TSS	83	18	150	Mg/L			
Turbidity	461	29		FTU			
COD	490	318	200	Mg/L			
M. Group Facto	ry						
TDS	2,765	2,135	2100	Mg/L			
рН	8.91	9.05	6-9				
TSS	105	27	150	Mg/L			
Turbidity	172	74		FTU			
COD	404	80	200	Mg/L			
S. Denim Wash	ing						
TDS	164	139	2100	Mg/L			
рН	6.58	6.68	6-9				
TSS	417	31	150	Mg/L			
Turbidity	310	36		FŤU			
COD	808	190	200	Mg/L			
PAPER RECYC	LING – PAG	CKAGING	Factory				
TDS	926	754	2100	Mg/L			
рН	6.61	7.55	6-9	<u>v</u>			
TSS	1,143	7	150	Mg/L			
Turbidity	636	29		FŤU			
COD	1,112	350	200	Mg/L			

ADVANTAGES of ECR

- > ECR gives good, clear, colorless & sometimes odorless water.
- ECR sludge is easy to de-water & is a low sludge producing System.
- > ECR systems have no moving parts, thus requiring less maintenance.
- ECR effluent has less TD Solids contributing to lower water recovery costs.
- ECR removes the smallest colloidal particles & facilitates faster coagulation

OTHER APPLICATIONS

Lagoon and Pit Cleanup

ECR performs reclamation of ground water contaminated with heavy metals, high molecular weight hydrocarbons and halogenated hydrocarbons.

Process & Rinse Waters

ECR treats process & rinse waters from electroplating, computer board & chip manufactures, paint rinse water, steel production, mining industry, automotive, airline and equipment repair & washing.

Cooling Waters

ECR is used to pre-treat water entering towers as well as blow down water to remove algae, suspended solids, calcium, and magnesium buildup.

Water Pretreatment

ECR has proven effective in removing bacteria, silica and TSS prior to subsequent polishing with reverse osmosis, ultra & nano-filtration.

Food & Beverage

Meat, Poultry, Fish, - Total plant effluents. The ECR can harvest additional protein & fat while removing FOG and COD.

Emulsified Oils in Water

ECR removes metals, oils, & dirt, from the exploration waters inherent with oil gathering and processing facilities .

DIS-ADVANTAGES of ECR

- Electricity may be too expensive in many parts of the world
- ECR will NOT remove Salts
 & Mono-valent Ions

