

## FLAGSHIP DHAKA Central ETP (BD) Ltd.

### **ENVIRONNMENT & WATER SOLUTIONS Division**

ECR Technology EXPERIENCE
WASTEWATER Applications





# **TEXTILE RMG Mills**

**ECR Installations at Woven-Knit/Print-Washing Units** 





# Electro Chemical Coagulation Electro Floatation Electro Chemical Oxidation



### New Times Demand More Effective Technology



### **ECR CAPABILITIES**

- Breaks oil emulsions
- •Removes O&G & COLOR
- •Reduces BOD, COD, & TSS
- •Removes colloidal solids
- •Removes HEAVY METALS
- •Removes complex organics
- Processes multiple pollutants
- •DESTROYS bacteria & viruses

### **ECR APPLICATIONS**

- Cooling towers
- Sewage treatment
- Water pretreatment
- Surface water cleanup
- Drilling & produced waters
- Food & beverage processing
- •Radioactive isotope removal
- •Process rinse & wash waters



# DHAKA EPZ - Series 60+ Modified by Mfr. Flagship Singapore For = 300m3/Hr - CETP Commissioned 1st FEBRUARY 2012





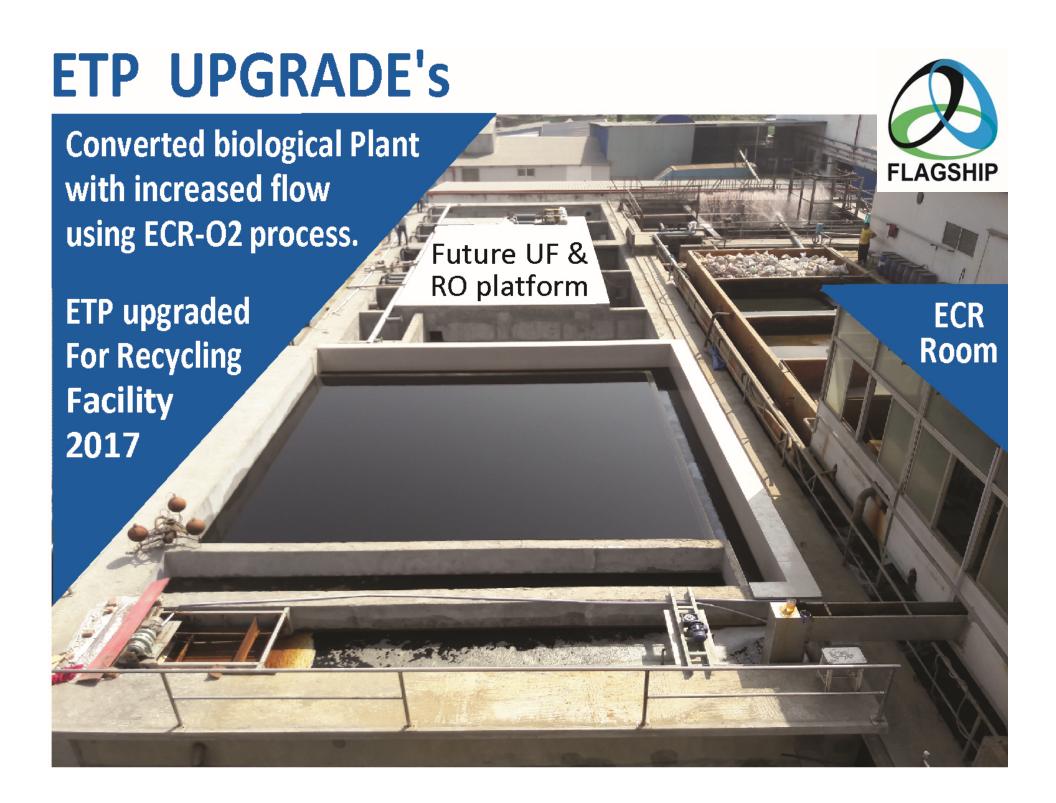
ECR + O2 = is a combination of Electro Chemical Coagulation, Sedimentation & Oxygen stripping at various Steps in CETP Process





# **DEPZ CETP operates 24/7**



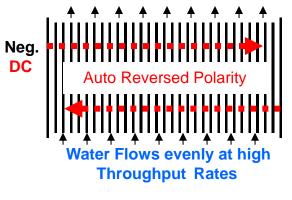

Real Time
Ultra Sonic
Flow Metering

# Primarily Heavy Textile Dyeing & is considered as a: Chemical Based Inorganic Effluent CETP Inlet CETP Outlet

### ECR – O2 Reduction at CETP

COD from 950 to < 120 Mg/L BOD from 280 to < 30 Mg/L TSS from 250 to < 30 Mg/L

- Daily Tested by In-House Laboratory
- Monthly Tested by DEPZ Laboratory
- Quarterly Tested by DOE Laboratory
- Private Testing by Joined Enterprises






# Recommended for Synthetic type Wastewater(s) Treatment

"The Electro Contaminant
Removal process is based on valid scientific principles involving responses of water contaminants to strong electric fields and electrically induced oxidation and reduction reactions"

The reactor chamber Colloidal Water direct discharge





Instant Flocculation

Atmospheric pressure chamber Units sized from small to 180 M<sup>3</sup>/Hr.

Greater surface reaction area with vertical flow Easy blade replacement & CIP cleaning

LESS voltage = LESS energy consumption

used at CETP & individual RMG Dye Mills

Pos.

DC



# FLAGSHIP Dhaka Environment & Water Solutions

**Sales & Services for TEXTILE Industry** 

# ECR INTEGRATIONS / ETP UPGRADES

- Increased Flow
- Decreased Sludge
- Decreased Op. Costs
- Decreased land Area
- Non Hazardous Residue

END USER must
Accommodate
Sedimentation / HRT





KNIT & Print Plant
Meets BSR-DETOX

Electro Floatation REMOVAL



Minimized solids before O2 – UF & RO







# World Wide Review & Use

### Including Dhaka and Shahjalal Universities

### ☐ Office of U.S. NAVAL RESEARCH

"The use of ECR in front of a multi-membrane systems of UF/RO promises to improve the performance of the membrane system and to broaden its application to include feed water having high suspended solids levels".

### □ Journal of Hazardous Materials

"Treatment of TEXTILE Wastewaters by ECR"
The process has been found to be very efficient in COD removal and de-coloration with low-energy consumption".



### □USEPA & U.S. Coast Guard"

"The results show that electro-coagulation treatment is effective in destabilizing oil emulsions. Removal efficiencies (extractable oil) exceeded 99% resulting in non-detectable values of less than 0.2mg/L TPH values in the effluent.

The process was also effective in

removing heavy metals with removal efficiencies ranging from 71 to 99%".



# Contaminant(s) Removed by ECR

**Irrespective of Industry** 

| <u> </u>        |                      |                                        |                     |
|-----------------|----------------------|----------------------------------------|---------------------|
| Heavy<br>Metals | Average %<br>Removed | Other<br>Contaminants                  | Average%<br>Removed |
| Aluminum        | 99.0                 | Aldrin                                 | 98.0                |
| Arsenic         | 96.0                 | Chloreiviphos P                        | 99.0                |
| Barium          | 98.0                 | Cypermethrin <sup>E</sup> <sub>S</sub> | 94.0                |
| Calcium         | 98.0                 | DDT Ť                                  | 99.0                |
| Cadmium         | 98.0                 | Diazinon <sup>I</sup> c                | 99.0                |
| Total Chromium  | 99.0                 | Lindane i Š                            | 99.0                |
| Cobalt          | 62.0                 | Proptamphos <sup>D</sup>               | 99.0                |
| Copper          | 99.0                 | Boron s                                | 70.0                |
| Iron            | 99.0                 | Cyanide                                | 99.0                |
| Lead            | 97.0                 | E. Benzene                             | 99.0                |
| Magnesium       | 98.0                 | MP-Zylene                              | 98.0                |
| Manganese       | 83.0                 | O-Zylene                               | 98.0                |
| Mercury         | 66.0                 | Toluene                                | 99.0                |
| Molybdenum      | 80.0                 | Fluoride                               | 60.0                |
| Nickel          | 99.0                 | Nitrate                                | 40.0                |
| Vanadium        | 95.0                 | Nitrogen TKN                           | 93.0                |
| Zinc            | 99.0                 | PCB-Arochlor                           | 82.0                |
| Platinum        | 83.0                 | Hydrocarbons                           | 98.0                |
| Selenium        | 42.0                 | Phosphate                              | 98.0                |
| Silver          | 91.0                 | Potasium                               | 45.0                |
| Tin             | 89.0                 | Silicon                                | 99.0                |

Destroys Bacterial Growth mechanism protecting RO systems from BIO-FOULING



# REWE Group Detox Program Waste Water and Sludge Testing

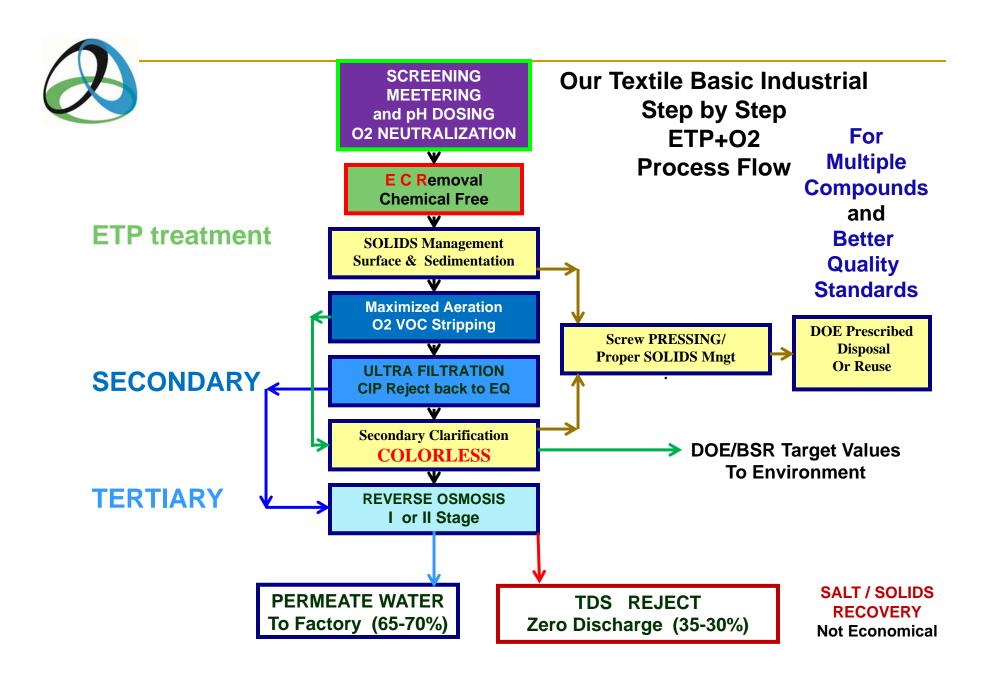
### **DETOX PRIORITY - 11 - GROUPS**

- Akylphenols & Ethoxylates
- Phitalates
- Brominated and Chlorinated Flame Retardents
- Azo Carcinogenic Dyes
- Organotin Compounds
- ■Poly & Perfluorinated Chemicals
- Chlorobenzenes
- Chlorinated Solvents
- Chlorophenols and Other Phenol
- ■Short-Chained Chlorinated Parafins
- Heavy Metals

NON-DETECT on DETOX GROUPS
Using ETP with:

- Pre-conditioning
- ☐ Aerated Equalization,
- Electro Coagulation,
- Electro Floatation
- ☐ Sedimentation, and
- Oxidation /Gas Stripping
- Secondary Clarification




BUYER Memberships

ECR Guarantees

**✓BSR** 

**✓DETOX** 

**√STWI** 



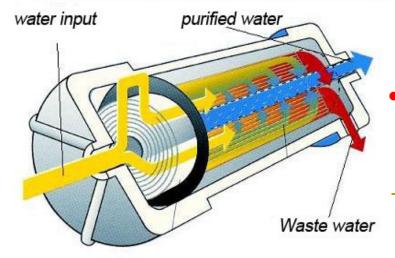


# ECR-O2 is coagulation followed by Sedimentation (CS) and Aerobic Conditioning

The process electro chemically oxidizes biodegradable compounds.

ASP + ECR-O2 ECR-O2 **Untreated** PolyDADMAC Woven **Total ETP** Operating MBR-0.02 UF-0.02 Cost Micron Micron **Passes** Knit RMG 32Tk/m<sup>3</sup> 17Tk/m<sup>3</sup> REB=9Tk/kwh 21Tk/m<sup>3</sup>

**Using ASP** 


- + De-colorant
- + MBR does NOT

achieve great

success

or good

economics.



The more Color, bacteria & Contaminants through UF and into RO Elements – Will result in:

- greater cleaning chemicals and cleaning frequency
  - more Power due to increased pressure
    - shorter Life Span of elements



# Coagulation / Flocculation/ Sedimentation prescribed by STWI and other Science based NGO's for Textile

Textile ETP's TODAY do not need to use conventional chemicals or Sensitive micro-organisms

# With CHEMICALS

Aluminum Chlorides
Aluminum Sulfates
Ferrous Chlorides





### With

### **ELECTRICITY**

Ferrous Ions ONLY

No Chemicals
No Micro-organisms







### **EFFLUENT TREATMENT is all about REMOVING SOLIDS from WATER**

SLUDGE Note: Heavy metals processed with sufficient activation energy precipitate into acid resistant oxide sludge that pass the Toxicity Characteristic Leaching Procedure (TCLP) which allows the sludge to be reclassified as non hazardous (Renk, 1989; Franco, 1974; Watanabe and Nojiri, 1975; Duffey, 1983).





# **ECR Series** — The future for Electro coagulation as a local water treatment technology is proven

### Units are built in Singapore for Asian requirements







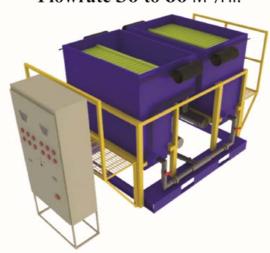
ALL
Units are
SKID
Mounted





Easy
Quick
&
Reliable

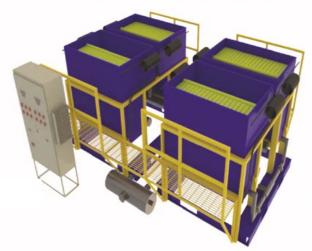


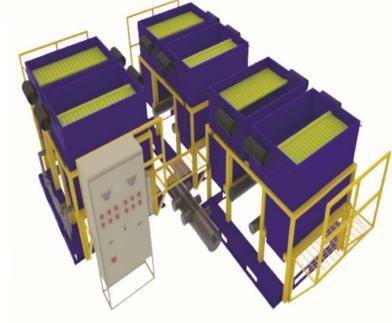

# **ECR** Unit Flow Through Capacities

**24-7 Operations** 

Series 5 & 10 Flowrate 15 and 30 M<sup>3</sup>/Hr.




Series 20 Flowrate 30 to 60 M<sup>3</sup>/Hr.



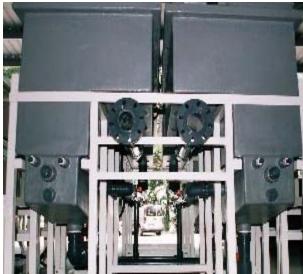

**ECR CAPACITIES** 

Series 60 Flowrate 60 to 180 M<sup>3</sup>/Hr.

Series 40 Flowrate 60 to 120 M<sup>3</sup>/Hr.








### **FLAGSHIP SINGAPORE**

Manufacturing & Engineering DHAKA after Sales and Service 24/7

- Strong & Durable Design
- Minimized Operator attention
- ➤ Best Plumbing & Electronics











# Plug and Play ECR Installations





Installation in 4 days



# REPEAT CUSTOMER NOW 120m3 FLOW RATE starting with a 30M3/Hr chemical plant – 1st Unit 2009 / 2Nd in 2011 Knit – Print – Some Woven









# TRIDENT T-40 = 120m3 FLOW RATE Installed 2011 – Knit Dyeing





# ECR INTEGRATION Into Existing Chem. ETP New FLOW RATE FROM 80 to 150m3/Hr Jan.. 2012 Knit Dyeing





# TRIDENT T-40 = 120m3 FLOW RATE upgrade with additional 60M3 Clarifier FEBRUARY 2012 – Knit Dyeing





### REPEAT CUSTOMER NOW 120m3 FLOW RATE First Unit Installed 2009. Second Unit installed 2010 – Knit Dying





# ECR INTEGRATION into existing Chem. ETP New FLOW RATE FROM 30 to 50+m3 Aug. 2012 Upgrades included new clarifier and additional O2 Aeration – Woven Dyeing

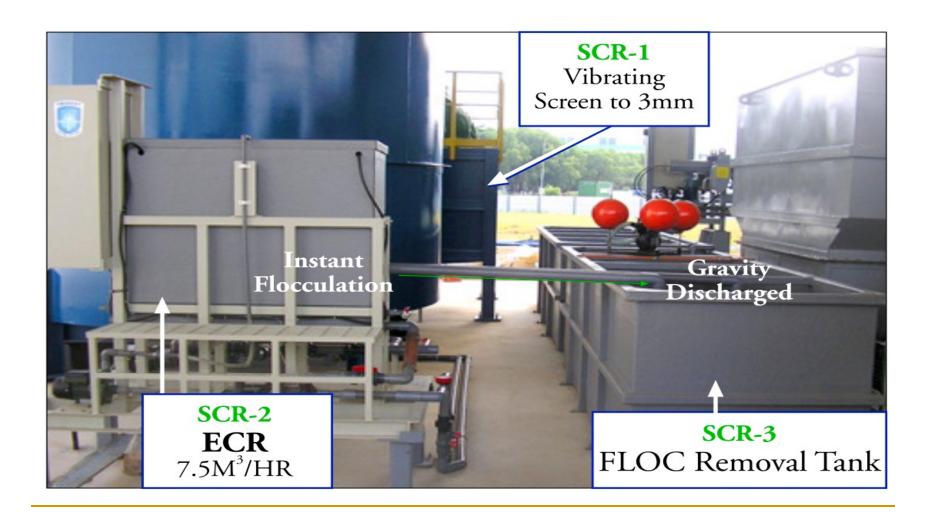




# ECR INTEGRATION Into Existing Chem. ETP New FLOW RATE FROM 70 to 150+m3 Aug. 2012 – Knit Dyeing






# ECR INTEGRATION Into Existing Chem. ETP New FLOW RATE FROM 80 to 150+m3 Sept. 2012 – Knit & Print Dyeing





# SembCorp Env.

**Singapore** - Garbage Leachate





# ECR Summary - ETP Technologies

- **≻Water Recovery or clean discharge**
- > Handles wide pollutant variations
- **≻**Consistent & reliable results
- >Treats multiple contaminants
- >Minimal operator attention
- >Low power requirements
- >No unwanted chemicals
- >Low operating cost
- >Low capital costs
- >Low maintenance
- >Sludge minimized
- >SMALL Green FOOTPRINTS
- **≻No Micro Organisms**







# FLAGSHIP DHAKA Environment & Water Solutions

# Completes the Water Recycle Spectrum With Proven Applications for Industrial Waste Water

Into **NEWater** with



Visit projects & Systems at

www.hydromastergroup.com